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J. Phys. A :  Gen. Phys., Vol. 5 ,  May 1972. Printed in Great Britain 

The statistical mechanics of entangled polymers 
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Instituto Mexican0 del Petroleo, Division de Fisicd ICA, AV Cien Metros 500. Mexico 

14 D F  
1 Department of Theoretical Physics, The Schuster Laboratory, University of Manchester. 
Manchester MI3  9PL, UK 

MS received 26 November 1971 

Abstract. A particular model of the entanglement of two polymers is studied in which one Is 
taken to have a solenoidal configuration whilst the other is a random walk. The various 
classes of configurations are analysed, and the probability distribution of the random flight 
polymer is calculated in detail when it lies in the same topological class as the axis of the 
solenoidal polymer. 

1. Introduction 

In studying the statistical mechanics of polymerized material if either the material is 
cross-linked, or if considering a fairly short time scale, one is led to effective thermo- 
dynamic functions which require a knowledge of the statistical mechanics of those 
components which have invariant properties. Thus if the different classes of entangle- 
ment possible are labelled ‘T’, the effective free energy is 

where p ,  is the probability of finding a particular topology when the material is formed. 
and F, the free energy of the system in that configuration under current conditions of 
P,  T, etc. Examples of this have been given (Edwards 1967a, 1967b, 1968, 1969 and 
Edwards and Freed 1969), and in particular some simple planar problems can be solved 
completely. But in three dimensions the problem becomes much more difficult, and 
later work by one of the present authors (Edwards 1971) essentially uses perturbation 
theory on the problem, and it is valuable to see if any three dimensional problems are 
soluble. In this paper we consider one such case, in which two polymers are considered, 
the first taking up a solenoidal configuration, whilst the other is a random flight polymer. 
In this case z will represent the description of the entanglements of the chain with the 
solenoid. In particular, there are two situations we are interested in, namely, the 
probability PTO of the chain not being entangled and secondly, the probability of being 
entangled 

C PTi (i = 1 . 2 . .  .) 
T i  

such that 

674 
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where L is the total length of the chain, 1 the length of a monomer and R ,  and R,  the 
positions of the ends of the chain. The change in entropy due to stretching of the chain 
will be given by 

The first term on the right hand side of equation (3) is the change in entropy due to 
stretching when the chain is not entangled, and the rest of the right hand side is the change 
in entropy when the chain is entangled. 

In order to calculate the Pri we need an invariant which characterizes uniquely the 
curves in the homotopical class Ti. In the case of a ‘phantom chain’, that is a chain 
which can pass through itself, this invariant will be the angle swept by the chain around 
the solenoid. Hence in this particular case the angle a will play the r61e of 7 and therefore 
we should calculate the probabilities Pa associated with such an angle. However, 
when we deal with real chains we will also have to consider selfentanglements ; these will 
bring an infinite number of classes of curves entangled with the solenoid to which the 
angle invariant is not sensitive; examples of these are given in figure 1. The angle swept 

Figure 1. 

by the curves in figure 1 around the solenoid is the same as in the situation shown in 
figure 2 which is not entangled with the solenoid. This implies that our invariant (the 
angle) will only be a lower bound to the degree of entanglement of the chain with the 
solenoid. That is, let us assume that 0 is the angle corresponding to the nonentangled 
situation, then, if the angle swept by the chain around the solenoid is 0 + 47cn (n is an 
integer), the chain will be at least as entangled as the angle indicates. 

Let Pe be the probability associated with the angle 0. We will assume that the main 
contribution to Pe arises from the class of curves not entangled with the solenoid, and 
not from the class of entangled curves which satisfy the same angle condition. This seems 
to be a fairly reasonable assumption from the evidence we have in two dimensions 
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(Edwards 1967a, 1967b). What is not very clear, is whether or not the sum of the 
probabilities associated with these ‘degenerate’ classes will be greater or comparable 
with the probability we are interested in. 

If we allow far knots of zero length, the number of such ‘degenerate’ classes will be 
infinite. However, because our chain has a finite length, if the knots are not allowed to 
use less than a minimum length it follows that the number of these ‘degenerate’ classes 
becomes finite. Assuming we had included such a condition, the angle invariant will be 
fairly representative of the degree of entanglement. The condition on the minimum 
length the knots are allowed to use, could be included as a constraint on the curvature 
of the curve. This will reduce considerably the contribution coming from tight knots. 
The weighting on the curvature of the path does not alter the mathematical formulation 
of this problem except in that instead of a diffusion equation (without curvature) we get a 
Fokker-Planck type of equation. Here we shall only consider the case without curvature. 

Let us denote the intrinsic equation of the solenoid and the chain by {(U) and r(s) 
respectively. The angle swept by the chain around the solenoid will be given by 

/ s . ( r - { )  = i L.B(r)ds 

where 

(4) 

which has the form of a magnetic field produced by a constant current going along the 
curve {(U). If our solenoid is tight then 

number of turns 
unit of length 

B(r) = constant (1 -O(r) )n  

where n is a unit vector along the axis of the solenoid and 

r < a  { Y  r > a  
O(r )  = (7) 

where a is the radius of the solenoid. 
If we take the z axis as the axis of the solenoid, we have 

B(r) = Bo(l - O(r))n (8) 

where Bo = constant. 
The angle swept by the nonentangled chain will be 

loL B(r) . i. ds = l:: Bo dz (9) 

where z1 = z(0) and z 2  = z(L) are fixed for all paths. In another path that starts at 
(rl ~ 41, zl)  inside the solenoid and ends at ( r 2 ,  42, z2) equation (9) is equal to the angle 
swept by the segment ( z 2  -zl) going through the z axis. If our solenoid is not tight then 
equation (6) will be only approximately true. 

Let us write equation (9) as 
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where c1 = f471n(n = 0, 1 , 2 ,  . .); for crT0 we get other homotopical classes rather than 
the nonentangled class. The probability that the angle swept by the chain is fi; B dz + CY 

is given by 

Pa(rr’L) = JV s 6( loL B(v) .  L ds- Bo dz-1) exp{ - ( : s o L L 2  ds)]6r J*Y 
(11) 

where JV is a normalizing factor and the integral with respect to 6r(s) is a path integral. 
This Weiner integral is introduced and discussed by Edwards (1967a, 1967b), and 
equations (1 lHl5) are similar to that discussion. Equation (1 1) can be written as 

P, = A’” JI dL exp( - iAa)P, 
00 

where 

and consequently Pl. can be reduced to the following differential equation : 

which written in cylindrical coordinates reads 

- + - - + - - + - + iAB,O(r) 
d2  l a  1 a2 
ar2 r Br r2 a42 P,(ru‘L) I’ll 

6(r - r’) 
Jrr‘ 

-- - 6(4 - 4’) 6(z -  z’) 6(L). 

Our problem then is reduced to solving (15) with sufficient accuracy to be able to 
Fourier transform back as in (12), and this is carried out in the next section. 

2. Calculation 

The basic equation is reduced to Bessel’s equation by Fourier transforming equation (15) 

gA(m,k,r,r’) eiEL exp(-ik(z-2’)) dk dE exp(im(4-4’)) I 
where g,(m, E ,  k, r, r’) is given by (16) 

Choosing our unit of length such that I = 6 and taking m = 0 owing to the cylindrical 
symmetry of the system we finally obtain 

6(r - r’) 
Jrr’ 

a 2  1 2 
- + - - + E + V,(r) g,(E, k, r, r’) = ~ ar2 r ar 
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where 

c = -(iE+k2) 

Vo(r) = @/CAB - i?B2)@(r) 

with the following boundary conditions : 

g,(E, k,  r,  r') -+ 0 

g,(E, k, r, r') -+ 0 

g , ( E ,  k, 0, r') and g,(E, k, r, 0) are finite 

a s r +  x 

as r' -+ x 

and finally : 

c 
(i) at r = a, g,(E, k ,  r, r') and ,g,(E, k ,  r, r') are continuous 

cr 

c 
(ii) at r' = a, g,(E, k ,  r ,  r') and y g , ( E ,  k ,  r, r') are continuous. dr 

There are more conditions than variables to be determined. In fact there are 16 
conditions and 9 constants to be determined. However from these conditions only 9 
are not redundant and therefore the rest provide a check on the considerable algebra 
involved. The results are 

0 < r < r' < U  
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In particular we are interested in the probability associated with the different classes, 
when the two ends of the chain lie inside the solenoid, that is, r < a and r’ < a. We will 
denote by Pal the probability Pa when r < a and r‘ < a. Substituting equation (22) into 
equation (12) we get 

e-iaa Q(E,  k, A) 
( 

m 

d;l 0 P1 ) J o ( P l r )  J- m T(E, k, 4 exp{ -ik(z-z’)} dk 

exp{ -ik(z-z‘)} dk Yo(plr‘)Jo(plr) 

exp{ -ik(z-z’)) dk Jo(plr‘)Yo(plr) 

0 < r < r’ < a  

0 < r’ < r < a. 
(25) 

If a # 0 then the second term in equation (25) is zero and we are Ieft with 

where M is the corresponding normalization such that 

However if a = 0 the second term of equation (25) diverges. Hence we run into 
difficulties when we try to calculate the Pol. This singularity arises from the fact that the 
Fourier transform of the Green function under consideration contains a term independent 
of AB and therefore when we Fourier transform back we get the 6(a). Yet we can avoid 
this difficulty in the following way: let us calculate the Fourier transform of the Green 
function of a polymer confined in a cylinder of radius a. This is the same as evaluating 
the Fourier transform of the Green function of a brownian particle confined in a cylinder 
with perfect absorbing walls the result for this case is 

In our formalism this result is the limit case when B + 00 that is 

and therefore 

gAl(E, k, I ,  r’) -+ g(E, k, r,  r’)  as B +  CO. (30) 

From equation (28), we realize that, the term that is.giving us trouble arises from the 
contribution of some paths going strictly by the inside of the solenoid. This means that 
the term $n(Q/T)Jo(plr’)Jo(plr) of g,, contains the contribution coming from: (i) some 
paths going strictly by the inside of the solenoid, and (ii) all other paths which do not 
lie strictly inside the solenoid. 
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Yet if L is large such that 

a < z - z '  K L 

then the contribution to the total probability coming from the paths going strictly by 
the inside is much smaller than the contribution from the ones which at some point go 
out and in again. To illustrate our point we show in figure 3 (a and b) the type of paths 
that contribute to the first and second term of g,, respectively. 

\ x x x x x  x x  

Solenoid Solenoid 

x x  x x x x x  

o are the  end points o f  the  polymer 

( 0 )  

Figure 3. 

In other words, if we wait long enough it is highly improbable that a brownian 
particle will remain in the same region of space without ever crossing out of that region. 

From the above argument we conclude that we can cancel the first term of g A , ,  
before we Fourier transform back without affecting our results significantly. Hence we 
write for Pol the following : 

x Jo(Plr')Jo(Plr). (26') 

An interesting question is if the absorbing boundary conditions are sufficiently 
realistic to describe a confined polymer chain? It seems from the previous discussion 
that apart from the absorbing boundary conditions we should neglect the term which is 
not sensitive to the 'porosity' of the boundary walls. 

The only problem now left is to integrate the expressions given by equations (26), 
(26'), (27) and substitute these into equation (1). However these integrals are not easy to 
evaluate and even if approximations are introduced nevertheless the poles of these 
integrals should be obtained by numerical methods. It is interesting to note that the 
poles of these integrals are exactly the eigenvalues of equation (18). To be more precise 
the poles are at the points which satisfy the condition from which the eigenvalues, of the 
corresponding homogeneous equation to equation (18), are extracted. One could think 
of an extreme case where a-,  cc L -+ x. and z - z '  >> 1, and under these circumstances 
the entropy of a chain highly entangled? can be calculated analytically. We leave this 
calculation and the integration of the exact pal for a future paper. 

We must remark that strictly speaking the only reliable result which can be drawn 
out of the present analysis is in fact PmI ( r ,  r', z, z', E). Before use in applications we must 
construct a new parameter which is more representative than the angle in describing 

t We are assuming that we know the chain is in that topological state, in other words we are proposing a 
microcanonical point of view. 
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‘the degree of entanglement’. This can be achieved by introducing curvature (and possibly 
torsion) together with the angle. In this way we would cut the contribution coming 
from ‘degenerate classes’ (ie those to which the angle is not sensitive). 

3. Conclusions 

Although we have only considered an idealized situation, this problem already intro- 
duces several of the features to be expected in realistic cases. The analysis presented here 
has ignored, so far, the nonphantom character of the chain with itself. This introduces 
an infinite number of degenerate classes entangled with the solenoid and therefore 
makes of the angle a lower bound to the degree of entanglement. To cut the contribution 
of such classes curvature (and possibly torsion) or at any event a more realistic treatment 
of short distances has to be introduced. 

Acknowledgments 

We should like to thank Dr P Lewis for a discussion of experimental facts which may 
depend on entanglement conditions. We also want to thank Drs C Price, M C Kirkam, 
A Subramanian and Professor Allen for providing us with the results of their experiments 
prior to publication which have led us to believe that the problem of entanglements is 
intimately connected with some of the puzzling features of the equation of state of 
rubbers (see Alexander-Katz 1970). One of us (RA-K) would like to thank the British 
Council and the Instituto Mexican0 del Petroleo for an award of a Scholarship during 
his stay at Manchester University. Finally we are grateful to Dr L Garcia-Colin for 
detailed reading of the manuscript and to Dr E Pina for interesting discussions. 

References 

Alexander-Katz R PhD Thesis 1970 University of Manchester 
Edwards S F 1967a Proc. Phys. Soc. 91 513-9 
__ 1967b Proc. Phys. Soc. 92 9-16 
~ 1968 J. Phys. A: Gen. Phys. 1 15-28 
- 1969 J .  Phys. C: Solid S t .  Phys. 2 1-13 
~ 1971 Polymer Networks (New York:  Plenum Press) 
Edwards S F and Freed K F 1969 J .  Phys. A: Gen. Phys. 2 145-50 


